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Brenner (Physica A, vol. 349, 2005a, b, pp. 11, 60) has recently proposed modifications
to the Navier—Stokes equations that are based on theoretical arguments but supported
only by experiments having a fairly limited range. These modifications relate to a
diffusion of fluid volume that would be significant for flows with high density gradients.
So the viscous structure of shock waves in gases should provide an excellent test
case for this new model. In this paper we detail the shock structure problem and
propose exponents for the gas viscosity—temperature relation based on empirical
viscosity data that is independent of shock experiments. We then simulate monatomic
gas shocks in the range Mach 1.0-12.0 using the Navier—Stokes equations, both
with and without Brenner’s modifications. Initial simulations showed that Brenner’s
modifications display unphysical behaviour when the coefficient of volume diffusion
exceeds the kinematic viscosity. Our subsequent analyses attribute this behaviour to
both an instability to temporal disturbances and a spurious phase velocity—frequency
relationship. On equating the volume diffusivity to the kinematic viscosity, however,
we find the results with Brenner’s modifications are significantly better than those of
the standard Navier—Stokes equations, and broadly similar to those from the family
of extended hydrodynamic models that includes the Burnett equations. Brenner’s
modifications add only two terms to the Navier—Stokes equations, and the numerical
implementation is much simpler than conventional extended hydrodynamic models,
particularly in respect of boundary conditions. We recommend further investigation
and testing on a number of different benchmark non-equilibrium flow cases.

1. Introduction

The generally accepted parameter which indicates the extent to which a local region
of flowing gas is in thermodynamic equilibrium is the Knudsen number:

A Ma
Kn= — ma— 1.1
n= oo (1.1)

where 4 is the mean free path of the gas molecules, L is a characteristic length of
the flow system, the Mach number of the flow Ma= |u|/c with u the flow velocity
and ¢ the speed of sound, and the Reynolds number Re=plu|L/u with p the
mass density and p the dynamic viscosity. For high Re flows over solid bodies, the
characteristic length scale is the boundary layer thickness, and the denominator on
the right-hand side of (1.1) is v/Re (see e.g. Schaaf & Chambré 1961). As Kn increases,
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the departure of the gas from local thermodynamic equilibrium increases, and the
notion of the gas as a continuum—equilibrium fluid becomes less valid. The range of
use of the continuum-—equilibrium assumption is therefore clearly limited, with the
applicability of the classical Navier—Stokes—Fourier equations (with standard no-slip
boundary conditions) confined to cases where Kn <0.01, typically. Extended, or modi-
fied, hydrodynamics attempts to extend the range of applicability of the continuum-—
equilibrium fluid model into the so-called ‘intermediate-Kn’ (or ‘transition—
continuum’) regime where 0.01 < Kn<1.

Brenner (2005a) recently proposed modifications to the Navier—Stokes—Fourier
equations for flows with appreciable density gradients. His theoretical developments
and experimental validations are centred on slow-moving flows where variations in
density are primarily caused by variations in temperature rather than pressure. Of
particular interest to Brenner is the motion of particles due to thermal gradients,
called ‘thermophoresis’, which provides good, yet fairly limited, supporting evidence
for his work. This range of evidence should be broadened, particularly since his work
challenges the fundamentals of conventional fluid dynamics and so demands rigorous
validation. It is therefore of particular interest to see whether his modifications to
the classical Navier—Stokes—Fourier equations improve their predictive capabilities for
intermediate-Kn flows.

In this paper, we investigate the application of Brenner’s modified Navier—Stokes
equations to the shock structure problem. This case has been used in the past for test-
ing several proposed extended hydrodynamic models, such as the Burnett equations,
by Muckenfuss (1962), Bird (1970), Barcelo (1971), Steinhilper (1972), Sturtevant &
Steinhilper (1974), Alsmeyer (1976), Narasimha & Das (1986), Lumpkin & Chapman
(1991), Zhong, MacCormack & Chapman (1991), Reese (1993), Reese et al. (1995),
Levermore & Morokoff (1998), Cercignani, Frezzotti & Grosfils (1999), Myong (2001),
Macrossan & Lilley (2003), Xu & Tang (2004), Torrilhon & Struchtrup (2004) and
Struchtrup (2005). Brenner’s modified equations can be considered an extended hydro-
dynamic model, and their relationship to established models is discussed towards the
end of this paper. In order to be concise and avoid ambiguity, for the remainder
of this paper we shall use the expression ‘Navier—Stokes’ to refer to the classical
Navier-Stokes—Fourier equation set, and adopt the term ‘Brenner—Navier—Stokes’ to
refer to Brenner’s modified version of these.

2. The shock structure problem

The shock structure problem concerns the spatial variation in fluid flow properties
across a stationary, planar, one-dimensional shock in a monatomic gas. We define the
flow as moving at a speed u in the positive x-direction, with the shock located at x =0:
the upstream conditions at x = —oo are super/hypersonic and denoted by a subscript
‘1’; downstream conditions at x = 400 are denoted by a subscript 2. While shocks are
often modelled as discontinuities, their physical properties in fact vary continuously
from their upstream to their downstream levels over a characteristic distance of a
few mean free paths, because the relaxation times for heat and momentum transport
are finite. The flow in this shock layer is far from being in local thermodynamic
equilibrium, typically Kn=0.2~0.3, ie. very much within the intermediate-Kn
regime.

Since the Navier—Stokes equations perform poorly at these Kn, the shock structure
problem is particularly apposite for testing extended hydrodynamic models. The
problem possesses certain features that make it attractive for numerical investigation,
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particularly if hydrodynamic models with high-order derivatives are used:

(a) there are no solid boundaries to consider;

(b) the upstream and downstream boundary conditions are clearly defined through
the Rankine—Hugoniot relations, with all gradients of flow quantities tending to zero
far upstream and downstream of the shock;

(c) the problem is one-dimensional and steady.

A monatomic gas possesses no modes of vibration or rotation, cannot dissociate, and
only ionizes at the highest temperatures, so its thermodynamic behaviour is generally
much simpler than that of polyatomic gases. It is for this reason that monatomic
gases have generally been preferred as the test gas in shock structure experiments
and analysis. Resulting data have historically been presented in normalized form and
the lack of access to the raw data presents an opportunity for us to specify the test
problem in a non-dimensionalized form that reduces the pre- and post-processing
effort.t

(i) It is convenient to set the upstream temperature 77 = 1 because, for a given u,
the coefficient of proportionality A is then independent of the exponent of s in the
power law relation of (3.3). For simplicity we then choose A =1 and, hence, u; =1.

(i1) It is useful to set ¢; =1 so that the upstream flow speed u; relates directly to
the upstream Mach number Ma;. The ratio of specific heats, y, is 5/3 for monatomic
gases, so the gas constant R =c?/(yT)=3/5 in our adopted non-dimensionalized set
of units.

(iii) The final parameters can be set so that a unit length corresponds to the
upstream Maxwellian mean free path:

16 wic

= , 2.1
521y pi (2.1)

AM1
where p; is the upstream pressure. For this test case 16/5./2ny =0.99~ 1, so Ay =~
wic1/p1- By setting p; =1, the unit length then corresponds almost exactly to Ay;.
All normal gradients of p and T are specified as zero at the solution domain
boundary far downstream. The shock is maintained stationary and fixed within the
domain by application of the Rankine—-Hugoniot velocity relation at the downstream
boundary, which for our case is
uz 1 )
— = —(143Ma;"). 22
o, = g1+ 3Ma) (22)
The case is initialized with a step change in fields from upstream to downstream at
x =0. To minimize the time required to reach a steady-state solution, the downstream
pressure and temperature are initialized using Rankine-Hugoniot relations for
pressure and temperature, which for our case are:
1 T
P2 _ 2 (5Ma}—1) and -2=2222 (2.3)
4 Ty pru
The initial and boundary conditions for the actual solution variables, described in
§4 below, are simply derived from those for p, T and u, e.g. initial and boundary
conditions for p are calculated from p and T using the perfect gas law, p=pRT.
When we include the second derivative of p through application of (4.7), below, we
specify additionally that the normal gradient of the gradient of p is zero.

T In what follows, the use of a power law viscosity model, described in §3.1, is anticipated.
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3. The viscosity—temperature relation

One of the main uncertainties in the physical modelling of the shock structure
problem is the relation between pu and 7. This is unfortunate because the w(T)
relation has an appreciable effect on the profile of a simulated shock — in the extreme
case of assuming a constant u, results of simulations are very poor. It could even
be argued that the Navier—Stokes equations could be made to work for the shock
structure problem simply by adjusting the w(7') relation until experimental shock
profiles are reproduced. The value of the shock structure problem as a good test
for hydrodynamic models therefore relies on establishing a good u(7') relation from
reliable experimental sources, preferably independent of shock data. We therefore
review sources to establish w(7T) relations for a range of monatomic gases, from
which argon is chosen for our test problem.

3.1. The power law relation
The viscosity of a perfect rarefied gas is defined through

u=1opocnnl = %ronT, (3.1)

where n is the gas molecular number density, 7; is the collision interval for momentum
transport, and 7 is the collision interval for hard-sphere molecules. That the viscosity
given in (3.1) is, in fact, purely dependent on temperature and not mass density, arises
from the nature of the intermolecular force law which determines how molecules
interact in collision with each other. For reasons of simplicity, this force is often
modelled, for a given species of molecule at a particular temperature, as varying with
distance from the molecular centre as an inverse power law with coefficient v. In a
collision, molecules approach each other with a relative speed g and slow to a stop
a distance d from each other when their kinetic energy is transformed to potential
energy in the force field, ie. g? ocd~*!. With translational temperature a function
of the square of the molecular velocity, it is then clear that the effective molecular
diameter, d oc T~1/=D_ The collisional relaxation time 7, is then the mean free path
(oc n7'd™?), divided by the mean molecular velocity (oc T'/?) so that

1 2
ntgoc T12d2 =71, where s==-+ . (3.2)
2 v—1
Equations (3.1) and (3.2) yield the well-known relation
wocT® or u=AT?, (3.3)

where A is a constant of proportionality. There are two theoretical limiting cases for
the intermolecular force law: v =00, s =1/2 corresponds to hard-sphere molecules;
v=>5, s =1 corresponds to so-called Maxwellian molecules. Real molecules generally
have a value of v ranging from about 5 to around 15.

3.2. Experimental data for monatomic gases

Increasing the value of the exponent s in (3.3) in a shock structure calculation
introduces more dissipation, particularly at the high-temperature, downstream side of
the shock. This additional dissipation acts to smooth out the shock layer, increasing
its thickness and, in particular, lengthening the downstream ‘tail’ in the flow property
profiles.

Therefore, in order to test any hydrodynamic model it is important to set the expo-
nent s independently of the shock structure problem under investigation. Maitland &
Smith (1972) critically assessed the viscosities of a number of gases, obtained from
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FiGure 1. Experimental viscosity versus temperature data for intermediate temperatures
for argon, helium and xenon, fitted to a power law: poc T°.

Argon Helium Xenon
Applicable range s v s v s v
Up to Mach 4.3 0.68 12.0 0.71 10.7 0.77 8.5
Mach 4.4-12.5 0.76 8.8 0.83 7.2 0.72 10.3

TaBLE 1. Collated experimental values of s and v for argon, helium and xenon gases.

several different sources using a variety of techniques, such as the capillary flow
method, oscillating disk and rotating cylinder methods, and observations of the
retardation of an oil drop in free fall through a gas. For the monatomic gases
argon, helium and xenon they produced viscosity data which they estimated to be
accurate to 1.5% in the temperature range 80-2000 K. That upper limit of 2000 K
is the downstream temperature of a shock of Mach 4.3 propagating into a room-
temperature gas; hence these viscosity data are applicable to shocks of Ma <4.3.

Amdur & Mason (1958) estimated the intermolecular potential at higher tempera-
tures from observations of the scattering of high-velocity molecular beams, and
produced tables of the viscosity of gases at temperatures up to 15000 K, corresponding
to a shock of Mach 12.5. It is not known how accurate these data are: Amdur and
Mason estimated that at the higher temperatures the error in viscosity could be as
much as 10 %.

We have used these data to estimate the value of s (and hence v) in (3.2) for
different temperature ranges. We have fitted curves of the power law in (3.3) by
minimizing the error in viscosity for the two sets of experimental data. More details
of this process can be found in Reese (1993), but the experimental data and best-fit
curves for three common monatomic gases are shown in figures 1 and 2, and the
corresponding exponents s and v are given in table 1.

The coefficient v is itself a function of temperature, because at higher temperatures
molecules with more energy can penetrate each others’ force-fields more effectively.
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FiGURe 2. Experimental viscosity versus temperature data for high temperatures for argon,
helium and xenon, fitted to a power law: p oc T*.

Therefore, owing to the differences in temperature range and experimental techniques
reported in the Maitland & Smith and Amdur & Mason papers, we have considered
two ranges of temperature or, equivalently, shock Mach number: up to Mach 4.3,
and up to Mach 12.5. (It should be noted that the power law fit is not very good for
the high temperature data, which is itself of unknown accuracy, therefore the u(T)
obtained must be treated with caution.)

In the more limited temperature range of 3500-8500 K, Aeschliman & Cambel
(1970) obtained values for argon viscosity to an accuracy of 12 %, which can be repre-
sented to within 1 % error by a viscosity—temperature exponent of s =0.74. This value
compares well with our value of s =0.76 in table 1 for temperatures in the range
2000-15000 K.

Correlations between direct simulation Monte Carlo (DSMC) simulations and ex-
perimental shock density profiles can also provide data for the exponent s, particularly
at high temperatures (see Bird 1970; Barcelo 1971; Steinhilper 1972; Sturtevant &
Steinhilper 1974; Alsmeyer 1976; Lumpkin & Chapman 1991; Macrossan & Lilley
2003). While it is clearly preferable in our study of the shock structure problem to
use data that are independent of the problem itself, it is worth noting that each of
these published papers produces a value of v that falls within a range 9<v <11,
corresponding to 0.70<s < 0.75. The value s=0.72 of Alsmeyer (1976) is often
quoted: e.g. simulations by Macrossan & Lilley (2003) using this value of s agreed with
experiment within an estimated uncertainty of 5% for temperatures above 2000 K.

In our present study, three values of the exponent s for argon are therefore used:

(i) s =0.68, which is our best fit for shock Mach numbers up to 4.3;
(i) s =0.76, our best fit up to Mach 12.5; and

(iii) s =0.72, which is the mean of our best-fit values, as well as the commonly
used value of Alsmeyer (1976) that falls in the middle of the range of values from
DSMC correlations with shock density profiles. As this is the mean value, it is used
as the ‘control’ in our study.
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We focus on the power law form of (7)) in this paper in order to discern effects on
shock structure due to different constitutive models for momentum and energy diffu-
sion rather than due to the presumed relationship between gas properties. However,
we recognize that there are other models available for u(T), e.g. Sutherland’s Law, that
are generally equivalent to adding a weak attractive component to the intermolecular
force — which is physically more realistic. In our simple power law model, this
attractive force would manifest itself as an exponent s that decreases as temperature
increases, which is generally reported (see for example Chapman & Cowling 1970).
It is interesting to note, however, that our present analysis of experimental data does
not appear to bear this out: in the case of xenon in table 1, s decreases with increasing
temperature, but with argon and helium the exponent increases with temperature.

4. Brenner’s modification to the Navier-Stokes equations

Brenner presents his modification to the Navier—Stokes equations as a change in
Newton’s viscosity law. Before arriving at that discussion, we first express the standard
governing equations in an Eulerian frame of reference as:

conservation of mass

ap

5y TV @) =0, (4.1)

conservation of momentum
%—T—}—V'(umm)%—V'P:O, (4.2)

conservation of total energy
%—f+v-(umE)+V-je+v-(P-um)=0, (4.3)

where u, is the mass velocity, the momentum density m = pu,,, the total energy
density E = p(e + |u,,|?/2) with e the specific internal energy, j, is the diffusive flux
density of internal energy, and P is the diffusive flux density of momentum — the
familiar stress tensor — defined here as positive in compression: P= pl + T, where T
is the viscous stress tensor and / the unit tensor.

Based on this sign convention, the constitutive model for a Newtonian fluid relates
T to the rate of deformation tensor, D, by u and the bulk viscosity «:

T =—2uD — ktr(D)I, (4.4)

where D=Vu=(1/2)[Vu + (Vu)"] for a velocity u, ie. the overbar indicates the
symmetric part of a tensor. The deviatoric component of the deformation is D=D —
(1/3)tr(D)I.

In this constitutive model (4.4) it is generally considered that u is the mass velocity
u,, that, in the mass continuity equation, relates to a convective flux of mass dS - pu,,
at an element of surface area dS, or that in the Boltzmann equation represents the
statistical mean value velocity. However, this assumption has recently been questioned
by Brenner (20054, 2005b) who postulated that the velocity appearing in Newton’s
viscosity law should instead be the volume velocity u,, so named since it relates to
the flux of volume rather than mass.

The distinction between mass and volume flux is perhaps best explained by consider-
ing a single species fluid at a molecular level. The mass flux through dS is the product
of the molecular mass and the number of molecules passing through dS in one
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second. The convective flux is defined such that there is no net mass flux due to
random motions of molecules and, therefore, no diffusive mass flux.

To understand volume flux we can consider attributing to each molecule locally
a microscopic portion of the volume of fluid. This molecular volume is transported
with the molecule but will change depending on the mass density of its surroundings,
e.g. the microscopic volume of fluid shrinks as the molecule moves into a denser
region. A convective flux of volume is associated with bulk motion of the molecular
volumes, and is equivalent to the ratio of convective mass flux to mass density, i.e.
dS - u,,. If the fluid density varies across dS, as a molecule passes through dS there
is a change in its associated volume, thus a net flux of volume. Random motions can
therefore produce a net flux of volume, so that there exists a diffusive flux of volume
in regions of non-zero density gradient. The volume flux dS - u, therefore represents
the total flux of volume, comprising the convective flux dS - u,, and a diffusive flux
dS- j,, where j, is the diffusive volume flux density, such that

Uy, =u,+j,. (4.5)

For a single component fluid undergoing heat transfer, Brenner (2005a) proposed a
constitutive equation for j,:

1
ju=a o, (4.6)

where «, is termed the ‘volume diffusivity’. Exactly how «, should be quantified
for a given fluid state is an open question. Brenner relates «, directly to well-
known diffusivity coefficients under some limited conditions; in particular, for single
component fluids undergoing heat transfer, «, is the same as the thermal diffusivity
a=k/pc,, where k is the thermal conductivity and ¢, is the specific heat capacity at
constant pressure.

While the distinction between volume and mass velocities has been made, the
question remains of why the velocity appearing in Newton’s viscosity law should be the
volume velocity rather than mass velocity. Brenner’s justification is based on limited
evidence (e.g. comparison of analytical solutions with thermophoresis experiments). A
lack of theoretical physical argument could therefore lay the hypothesis open to some
criticism. However, some support for it can be found within the phenomenological
GENERIC theory presented by Ottinger (2005). First, Ottinger demonstrates that
the GENERIC formulation arrives at the standard Navier—Stokes equations when
the terms associated with mass density in the friction matrix are identically zero.
Then, by including non-zero terms associated with mass density in the friction matrix,
a revised set of governing equations is derived that includes two velocities, similar
to u, and u,, defined through (4.5) and (4.6). What emerges is that the standard
governing equations have historically ignored mass diffusivity on the basis that the
diffusive mass flux is zero, while forgetting that there are associated momentum and
energy fluxes that may not be zero. GENERIC includes these momentum and energy
fluxes, both of which are entropy-producing, making the process of mass diffusion
irreversible. The ability of mass diffusion to produce entropy is, according to Ottinger,
something that is missing from the conventional Navier—Stokes equations.

Brenner’s modification, essentially (4.5), can be incorporated into the system of
governing fluid equations either by recasting the equations using u, as the convective
velocity instead of u,, or by using u, in the constitutive equation for Newton’s
viscosity law. The former approach has been adopted elsewhere (see Ottinger 2005;
Bardow & Ottinger 2007) but here we choose the latter simply so that the Brenner
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modification appears more clearly as a new extended hydrodynamic model, rather
than a radical change to the governing equations themselves.

For a monatomic gas, x =0. Combining (4.4), (4.5) and (4.6) yields a modified
expression for the viscous stress:

T=—u [Vum + (Vu,,)" — %V . um] —2uV {ZV,O}. (4.7)

The Brenner approach requires the transport of energy to be similarly modified
through consideration of the diffusion of internal energy. It is usually assumed that
the diffusion of internal energy consists solely of heat diffusion, so that the diffusive
internal energy flux density, j,, is considered synonymous with diffusive heat transfer,
q =—kVT, according to Fourier’s law. However, the presence of a diffusive volume
flux, of flux density j,, enables energy to be transported across a surface by diffusive
work transfer of an amount —pj . The diffusive internal energy flux density is there-
fore given by

Je=4—PJyw (4.8)
which, following our argument above, can be re-written in the form

j.=—kVT — augvp. (4.9)

Equations (4.7) and (4.9) comprise Brenner’s modifications to the classical Navier—
Stokes—Fourier equations. We should note that this new fluid model has yet to receive
either independent theoretical justification or experimental confirmation. As with any
new hypothesis or model it is also subject to refinement and re-casting into different
forms. However, we use it in this paper in the form presented in Brenner (2005b),
without prejudice, to provide an indication of its current utility and limitations.

5. Numerical solution of the governing equations

Our numerical shock structure solver is developed using the open source Field
Operation and Manipulation (OpenFOAM) software (see OpenCFD Ltd 2004). Writ-
ten in C++, OpenFOAM uses finite volume (FV) numerics to solve systems of partial
differential equations ascribed on any three-dimensional unstructured mesh of poly-
gonal cells. All solvers developed within OpenFOAM are therefore three-dimensional,
but can be used for one- or two-dimensional problems by the application of particular
conditions on boundaries lying in the plane of the direction(s) of no interest.

Fluid flow solvers in OpenFOAM are generally developed within an implicit,
pressure—velocity, iterative solution framework. The solver we developed for this
work first solves (4.1), (4.2) and (4.3) for p, m and E respectively. The equations
are treated in a segregated manner: for each equation, terms including the solution
variable are, wherever possible, treated implicitly, with other terms treated explicitly.
All equations include convection of transported variables that require a consistent,
conservative set of fluxes of u,,. After solving the sequence of segregated equations for
p, m and E, an iterative PISO-style method (similar to Issa 1986) solves an equation
for pressure p, derived from the perfect gas law, and (4.1) and (4.2), to produce
conservative fluxes of m from which the fluxes of u,, are derived. Finally, m is also
corrected from its new fluxes and p is corrected from the new solution of p according
to the perfect gas law, before moving forward to the next time step and returning to
the sequence of equations for p, m and E.
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Our FV discretization maintains a compact computational molecule for the ortho-
gonal component of the Laplacian terms, which corresponds to the interpolation of
Rhie & Chow (1982) in the pressure equation. Both the transported fields in convection
terms and the fluxes in m are interpolated using limiters from the MUSCL total vari-
ation diminishing (TVD) scheme (see van Leer 1979; Hirsch 1990) with identical lim-
iters used in all convection terms (for p, m and E) to maintain numerical consistency.
The temporal derivative is discretized using a two-time-level Euler implicit scheme.

We calculated shocks of Mach 1.2,1.7,2.2,2.84,3.4,4,5,6,7,8,9,10 and 11 in order
to provide a reasonable distribution of solution points for subsequent comparison with
results from experiment. Mach 2.84 was specifically chosen to coincide with shock
profile data communicated to us privately by P. Torecki & Z. Walenta. Similarly,
Mach 8 was chosen to coincide with the published shock profile data of Steinhilper
(1972), and Mach 9 coincides with a published profile of Alsmeyer (1976).

A solution domain of 33/,,; was used in all simulations — wide enough to contain
the entire shock structure comfortably. Our initial results were obtained using the
Navier—Stokes equations with the control viscosity exponent s =0.72. The results for
p and T converged on a mesh of 800 cells to within 1 % of the solution extrapolated
to an infinitely small mesh size. The results we present in this paper were produced
with a mesh of 2000 cells, corresponding to a mesh size of ~0.0171,,;. Numerical
solutions were executed until they converged to steady state, at which point the
residuals of all equations had fallen 5 orders of magnitude from their initial level.

6. Volume diffusivity
6.1. Unphysical behaviour when o, =«

We followed our initial Navier—Stokes simulations with preliminary simulations using
the Brenner—Navier—Stokes equations. These simply used a volume diffusivity o, =,
which was Brenner’s original suggestion (discussed in §4 above). However, our
simulations do not reach a converged solution with decreasing cell (or mesh) size: at
the upstream edge of the temperature profile a small undershoot develops at a cell
size of 0.064,,; that increases in magnitude with decreasing cell size. The problem is
present in profiles of all solution variables but is best illustrated in a plot of Mach
number, as shown in figure 3 for a Mach 8 shock. At best, the level of overshoot
at the smallest cell sizes seems unphysical; worse is that the overshoot may tend to
infinity as the mesh is further refined.

There is little doubt that the overshoot in Mach number is a consequence of
Brenner’s modification. In subsequent tests we were able to attribute the presence of
the overshoot to the additional term in the momentum flux, but not to the additional
term in the energy flux. We therefore postulate that the overshoot might be caused by
an inappropriately large volume diffusivity, particularly since it exceeds the diffusivity
associated with the remaining terms in the model, the kinematic viscosity v = u/p, by
a factor o* =, /v=Pr ' =1.5.

Our search for an alternative value of «, began by relating the physical process
of volume diffusion more closely to mass diffusion, rather than thermal diffusion.
However, the process of diffusion of mass within a single component fluid, or self-
diffusion, occurs at a similar rate to thermal diffusion. For a monatomic non-polar
gas, a self-diffusivity coefficient D,, ~1.32v can be derived from Chapman-Enskog
theory using the Lennard—Jones (6-12) potential (see Chapman & Cowling 1970).
The unphysical overshoot in Mach number remains for this value of self-diffusion
coefficient. The overshoot becomes less pronounced as «, is reduced but where the
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FIGURE 3. Mach number profiles for decreasing cell sizes, assuming o, = «.

overshoot exists, it appears to be unphysical and may tend to infinity as the mesh is
refined to an infinitesimally small size. Only when we reduce the volume diffusivity
coefficient to o, =v (i.e. when we set a* = 1) does the overshoot disappear.

6.2. Investigation of the unphysical behaviour

Zhong et al. (1991) showed that some forms of extended hydrodynamic equations
are unstable in time to periodic spatial disturbances with wavelengths shorter
than a critical length that is typically of the order of one mean free path. Such
instabilities appear in numerical simulations when the mesh is sufficiently fine to
resolve wavelengths shorter than the critical length, i.e. when the numerical cell length
is below this critical length. The appearance of an overshoot below a critical level
of mesh refinement in our simulations may indicate a similar instability, although
the overshoot does appear at a particularly short cell length and the solutions do
converge to a steady state and so do not ‘blow up’ in time.

Similarly, some forms of extended hydrodynamic equations, which may be stable in
time, are actually unstable in space to periodic temporal disturbances (see Struchtrup
& Torrilhon 2003; Torrilhon & Struchtrup 2004 ; Struchtrup 2005). Again, it is unclear
that such an instability would produce the overshoot behaviour we witnessed in our
preliminary calculations. Nevertheless, here we undertake both temporal and spatial
stability analyses of the Brenner—Navier—Stokes equations in order to investigate the
source of unphysical behaviour.

Following the procedures described in Zhong et al. (1991) and Struchtrup &
Torrilhon (2003), the governing equations from § 4 are first linearized in one dimension
to produce the following non-dimensionalized perturbation equations:

01 0 0
gt/ ! L 3 ! 38’ /
X by ,

0 % 0 %q

=0, (6.1)

where ¢’ and x’ are non-dimensionalized time and distance, respectively, ¢ = {p’ u' T'}T
is the vector of non-dimensionalized density, flow speed and temperature, and ¢’ and
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q' are non-dimensionalized momentum and heat fluxes respectively. From (4.7) and
(4.9), these momentum and energy fluxes are, respectively,

A ¥ O i o (©2)
and
, 1591 L ap
4ax Y ox (63)

We assume a solution to (6.1) of the form

¢ = ¢ expli(wt’ —kx')}, (6.4)

where ¢ is the amplitude of the wave, w is its frequency and k its propagation
constant. Equations (6.1) to (6.4) can be combined to produce a set of linear algebraic
equations of the form

A (w, k)¢ =0, (6.5)

for which non-trivial solutions require
det[.«/(w, k)] = 0. (6.6)

For the Brenner—Navier—Stokes equations, (6.6) yields the following characteristic
equation:

6iw® + 23k*w* — [10k* + (20 + 8a*)k*liw — [(15 — 4a*)k* 4+ 200*k®] = 0. (6.7)

If a disturbance in space is considered as an initial-value problem, k is real and
w = w, +1w; is complex. The form of (6.4) indicates that stability then requires w; = 0.
If a disturbance in time is considered as a problem of signalling from the boundary,
w is real and k =k, + ik; is complex. For a wave travelling in the positive x-direction,
k. >0, and stability then requires that k; <0. For a wave travelling in the negative
x-direction, the converse is true: k., <0 and stability requires k; > 0.

We examine temporal stability by solving (6.7) numerically for o for values of k in
the range 0 <k <oo. Trajectories of w are plotted in the complex plane in figure 4.
Two sets of trajectories are plotted: those for «, = « (corresponding to o* = Pr—' =1.5)
and those for o, =v (for which a*=1.0). In both cases the trajectories all lie within
the region w; >0, indicating stability for all k. This confirms, as expected, that the
observed overshoot is not caused by temporal instability.

We then turn to examine spatial stability by solving (6.7) numerically for k for
values of w in the range 0 < w < co. Trajectories of k are plotted in the complex plane
in figure 5 for both o, =v and o, =«. When o, = v the trajectories do not violate the
stability condition. However, when «, = «, the inset graph shows one trajectory starts
from w=0, k, =0 at k; 0.55, enters the unstable region {k, >0, k; >0}, and exits
into the stable region {k, <0, k; > 0} by crossing the k, =0 axis at k; ~0.56. Thus, the
stability condition is clearly violated for small w.

Subsequently we examined trajectories for a number of different o* and we found
that the equations are unstable for a* = 1.45, which suggests a potential problem
for some intuitive choices of «,, such as « and D,,. However, this result does not
really explain the cause of the overshoot in Mach number, since the overshoot only
disappears when o* falls to unity, i.e. considerably lower than 1.45.
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FIGURE 4. Temporal stability analysis of Brenner—Navier—Stokes equations (arrows indicate
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FIGURE 5. Spatial stability analysis of Brenner—Navier—Stokes equations (arrows indicate
direction of increasing w; grey-shaded areas indicate regions of instability).

Unphysical behaviour can also be observed by examining the phase velocity:
o
" k(@)

Figure 6 shows the phase velocity, normalized by the speed of sound in the non-
dimensionalized form in the perturbation equations (co= \ﬁ), for «*=1.0 and
a*=1.2. For both «*, results for mode 1 are superimposed and correspond to the

(6.8)

v



420 C. J. Greenshields and J. M. Reese

=12 o mode 3

Normalized phase velocity, v,,/cy

Frequency,

FIGURE 6. Normalized phase velocity for the Brenner—Navier—Stokes equations.

propagation of sound. The mode 2 results correspond to the diffusive transport of heat
and results for both o* are very similar. However, there is a marked difference between
results for the two cases for mode 3, relating to higher-order diffusive transport. The
a*=1.0 results are similar to those of other extended hydrodynamic models, e.g. the
super-Burnett equations (see Struchtrup & Torrilhon 2003), beginning at a moderate
speed, v, /co = 2.34 at w =0, before increasing steadily with increasing w. The o* = 1.2
results are, however, unusual: the phase velocity at w =0, i.e. vp;,/co=3.99, is high in
comparison to other hydrodynamic models (see Struchtrup & Torrilhon 2003). The
phase velocity also decreases initially with increasing w, before passing through a
minimum and increasing thereafter. The high initial phase velocity seems anomalous,
and rises to extraordinary levels for higher o*, e.g. if o*=1.5 then v,,/co=190.1
at w=0. The initial decrease in phase velocity with increasing w may allow low-
frequency waves upstream of the shock to overtake slower, higher-frequency waves
within the shock, creating counter-dispersion at the upstream end of the shock. The
initial decrease in phase velocity disappears only when «* falls below ~1.11, a level
quite close to that at which we find the unphysical overshoot disappears.

To summarize: our results show unphysical behaviour for the Brenner—Navier—
Stokes equations when o*=1.5. A spatial stability test confirms the equations are
unstable to temporal disturbances when o* = 1.45. Plots of phase velocity raise further
questions about the physical nature of the solutions when «* 2 1.11. Taken together,
this casts doubt both on Brenner’s proposed o, =« and on the apparently natural
choice of «,=D,,. The overshoot in Mach number disappears when o*=1.0, ie.
a, =v. We therefore adopt this model for «, in the Brenner—Navier—Stokes equations
for the remainder of this paper.

7. Results and comparison with experiment
7.1. Shock profiles

We prefer, where possible, to compare results with actual experiments rather than
DSMC simulations, since the latter requires certain assumptions relating to the form of
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the intermolecular force law. We therefore first make comparison for the variation of
density through the shock layer using the actual measured data of Steinhilper (1972),
P. Torecki & Z. Walenta (1993, personal communication) and Alsmeyer (1976).

Figure 7 shows the variation of normalized density and temperature, p* and T*
respectively, through an argon gas shock of Mach 2.84 calculated using the Navier—
Stokes and Brenner—Navier—Stokes equations with s =0.72. The experimental density
profile of Torecki & Walenta (1993, personal communication) is also shown. It is
clear that the shock layer predicted by the conventional Navier—Stokes equations is
too thin, whereas the Brenner—Navier—Stokes equations produce good agreement with
the experimental data. The main region of disparity is upstream of the shock layer
(left-hand side in the figure) where the experimental data trails out and is flatter than
the prediction.

Similarly, figure 8 shows the predicted profiles for a Mach 8.0 shock compared with
experimental density data of Steinhilper (1972). Again, the Navier—Stokes equations



422

C. J. Greenshields and J. M. Reese

s

Normalized density, p* and temperature, 7'

—— Brenner—Navier—Stokes

---- Navier—Stokes
o Experiment

-2 -1

0

1

2

3

4

5

6

Distance through shock, 7,

FIGURE 9. Simulated and experimental profiles of a Mach 9.0 stationary shock; s =0.72.

produce a shock profile which is too thin when compared with experiment. However,
the Brenner—Navier—Stokes equations produce excellent agreement in the central and
downstream shock regions (p* > 0.2); only in the upstream region is the predicted
profile sharper than the experimental data shows — just as in the Mach 2.84 case.

Figure 9 shows results for a Mach 9.0 shock of Alsmeyer (1976). In this case our
observations are very similar to those we make about the Mach 8.0 shock profile,
above; this figure is included here for completeness.

7.2. Inverse density thickness

Apart from direct comparison of calculated and experimental shock profiles, there are
other shock parameters for which experimental and/or independent numerical data
are available. The principal parameter is the non-dimensional shock inverse density
thickness, defined as

”

AM1
P2 — pP1
In the absence of an a priori characteristic length scale in an unconfined flow, the
definition of Kn requires a characteristic dimension of a flow structure, in this case
the actual thickness of the shock layer itself. Therefore L;l has the interesting feature
that it represents Kn for the shock structure case.t

Alsmeyer (1976) reported the most comprehensive collection of experimental shock
data, comprising previously published work as well as his own new results. Figure 10
shows L' for argon shocks up to Mach 11, with experimental data collated from
Steinhilper (1972), Alsmeyer (1976) and Torecki & Walenta (1993, personal com-
munication). The Navier-Stokes equations, with s =0.72, predict shocks of approxi-
mately half the measured thicknesses over the entire Mach number range. As L;l in-
dicates Kn, this poor agreement is expected because we can see that Kn ~ 0.2-0.25 over
most of this Mach number range, so the Navier—Stokes equations are beyond their
effective range of application. However, the results from the Brenner—Navier—Stokes

-1 _
L =

IV 0l max- (7.1)

+ While this identification then indicates, as we see below, that shocks generally have such a high
overall Kn that any hydrodynamic model should fail, we can still assess extended hydrodynamic
equations for their usefulness as engineering models.
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equations closely match experiment, with moderate sensitivity to the choice of
viscosity—temperature exponent: using 0.72 (the control value) and 0.76 (our best-fit
value for temperatures equivalent to shocks up to Mach 12.5), the results fall within
the limits of experimental scatter; using s =0.68, the results stray slightly outside the
scatter of experimental data just before they reach the exponent’s limit of applicability
at Mach 4.3. With the results for 0.72 at the higher end of the experimental scatter,
and results for 0.76 at the lower end, we estimate that an exponent of s ~0.74 would
produce the best agreement with the experimental results.

7.3. Density asymmetry quotient

Agreement of predicted and experimental shock inverse density thicknesses is not
the only measure of the success of a new model. As L;l depends on the density
gradient at the profile midpoint alone, it does not express anything about the overall
shape of the profile. If Lp_1 is used as the sole parameter to describe the shock it
could be concluded that the Brenner—Navier—Stokes equations tested here, and many
other models previously published, have excellent predictive capability. However, the
shock profiles in figures 7 and 8 show there are differences between simulation and
experiment, in particular relating to the flatter region upstream of the profile that is
observed experimentally.

Therefore, a second parameter which should be used to describe the shock profile,
and for which experimental data is available, is the density asymmetry quotient Q,.
This is a measure of how skewed the shock density profile is relative to its midpoint. It
is defined for a one-dimensional profile of normalized density, p*, centred at p*=0.5

on x =0, as
0
/ *(x)dx

0
Qp = oc_oo .
/0 [l — o*()] dx

A symmetric shock would consequently have Q, =1, but real shock waves are not
completely symmetrical about their midpoint. First, their ‘bulk’ form is generally

(7.2)
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FIGURE 11. Simulated and experimental asymmetry quotient (Q,) data, versus shock
Mach number; s =0.72.

skewed somewhat towards the downstream. Then, the aforementioned flattened,
diffusive region, that extends upstream of the shock profile, tends to increase Q,.
Figure 11 shows experimental data compiled by Alsmeyer (1976) in which Q,, increases
fairly linearly from ~0.9 at around Mach 1.5, through unity at around Mach 2.3, to
~1.15 at Mach 9. The bulk form therefore corresponds to Q,~ 0.9 and the upstream
flattened region accounts for a further increase in Q,, of up to 0.25 at Mach 9.

Results from the Navier-Stokes equations do not agree well with experimental
data: the bulk form is skewed towards the upstream side so that Q,>1 even at
the lowest Mach numbers, and the skewness further increases with Mach number
(apparently by sharpening of the profile downstream rather than flattening upstream)
so that by Mach 4, 0, ~ 1.4, compared to ~1.03 from experiment.

We find the Brenner—Navier—Stokes equations predict the bulk form of the profile
very well, predicting O, ~0.9 at low Mach numbers. As discussed in § 7.1, it does not
capture the flattened region upstream and so the departure from experimental data
increases with Mach number.

7.4. Temperature—density separation

The final shock structure parameter is the temperature—density separation, 7,
measured between the midpoints of the respective normalized profiles. In a shock, the
density rises from its upstream value to its downstream value behind the temperature,
due to the finite relaxation times for momentum and energy transport; a good
hydrodynamic model should resolve this spatial lag accurately. However, experimental
data for this parameter is scarce due to the difficulty in measuring temperature profiles,
so independent DSMC data is usually taken for comparison.

Figure 12 shows the temperature and density profiles for a Mach 11 shock calculated
using DSMC by Lumpkin & Chapman (1991), and the Navier—Stokes and the
Brenner—Navier—Stokes models. As in our earlier comparisons in §7.1, the Brenner—
Navier—Stokes equations produce profiles that are much sharper in the upstream
region of the shock than those from DSMC results.
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Figure 13 compares DSMC data for 87, over a range of shock Mach numbers with
results from our simulations. The DSMC data show an increase in 87, from ~1.54
at Mach 1.5 to ~2.91,,; at Mach 8. The Navier—Stokes and Brenner—Navier-Stokes
equations increasingly under-predict 87, with increasing Mach number, although the
Brenner—Navier—Stokes equations generally perform a little better over the Mach
number range.

7.5. Very strong shocks

The inverse density thickness of extremely strong shocks is a useful additional com-
parison for any proposed hydrodynamic model. Narasimha & Das (1986) examined
the solution of the Boltzmann equation for an infinitely strong shock (a more recent
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treatment is in Cercignani et al. 1999), modelling the upstream flow as a molecular
beam with a distribution function of the form f(x =—o0)=n§(u,), where § is the
Kronecker delta function. The shock layer may then be treated as a device for
converting this beam function into a downstream Maxwellian distribution function.
The distribution function in the shock layer can be expressed as a linear combination
of the two extremal distribution functions, a method similar to the bimodal method
of Muckenfuss (1962).

Using an expansion parameter that measures the departure of the distribution
function in the shock wave from that outlined in the previous paragraph, an infinite
series of ordinary differential equations is obtained for the shock thickness. This
series rapidly converges, and a solution of the first seven equations of the set yields
a predicted shock thickness of 6.71,,, which is written in terms of the downstream
Maxwellian mean free path version of (2.1). When this is converted into the L;l of
(7.1), the inverse density thickness for a shock with a downstream 1), equivalent to
that of a very strong shock of Mach 100 is predicted to be 0.076.

Our calculations for shocks of Mach 100 give L;l =0.156 for the Navier—Stokes
equations with s =0.72. The results with the Brenner—Navier—Stokes equations are
L,;"=0.091 for s =0.72, and L," =0.066 for s =0.76. These values for L' straddle
the solution from the molecular beam analysis. Further simulations with successive
adjustments to s gave a precise match in L' for s =0.742, which is in agreement
with the exponent estimated in §7.2 to produce the best agreement with experiment
over the range Mach 1-11.

8. Discussion and conclusions

The Navier—Stokes equations are robust and accurate over a wide range of Kn —
surprisingly so, given some of the relatively narrow axioms on which they depend
(ie. the continuum-fluid and local-equilibrium requirements). Such a good fluids
engineering model is difficult to relinquish, even when flow systems well beyond its
range of applicability are considered (see e.g. Herwig & Hausner 2003). However, it
is clear from the results in §7 that the Navier—Stokes equations fail in nearly every
respect in predicting correct shock structures above about Mach 2 (or, equivalently,
for intermediate-Kn flows).

While it is important not to draw strong conclusions based on just one test case,
our results are generally encouraging for the Brenner—Navier—Stokes equations. This
modified model is significantly better at reproducing the trends in the experimental
and DSMC data, and in the case of the inverse density thickness delivers an excellent
match. It is only the more detailed features of the shock profile that Brenner’s model
seems unable to reproduce.

First, it does not predict the flattened upstream region, as discussed in §7.3. In this
regard, a major advantage of DSMC as a technique for simulating intermediate-Kn
flows in general is its ability to produce non-Maxwellian velocity distributions, that
may also differ in directions parallel and perpendicular to the flow. It is not clear that
hydrodynamic models will be able to incorporate this physics properly, and certainly
the problems the Brenner—Navier—Stokes equations have in capturing the upstream
shock region properly is related to the fact that in this region the velocity distribution
function is a non-Maxwellian combination of fast, cold upstream molecules and
slower, hot molecules that have diffused from downstream regions.

The second feature is also related to this distribution function problem: bi-modal
methods (see e.g. Cercignani et al. 1999) for a hard-sphere gas predict a downstream
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temperature overshoot of around 1 %, which is confirmed by careful DSMC simula-
tions. There are no downstream overshoots predicted in any of the Brenner—Navier—
Stokes shock simulations.

While some of these features can be obtained using certain extended hydrodynamic
models that are formally O(Kn?) (see e.g. Lumpkin & Chapman 1991; Reese 1993;
Reese et al. 1995), this is at a cost: there are known problems of physical stability,
and the numerical implementation is difficult due to the large number of additional
nonlinear and high-order derivatives. The Brenner modification does not suffer as
much from these problems, having only a single additional term in each of the
momentum and energy conservation equations. That the adoption of these terms
provides a substantial improvement in predicted results raises the question of whether
this model can compensate, in part at least, for increased non-local equilibrium in the
gas, or whether this agreement is coincidental.

Brenner (2005b) proposed his modifications partly to understand how some effects
that are traditionally thought of as becoming important only in a flow approaching
the intermediate-Kn range, e.g. slip at solid bounding surfaces, can be encompassed
in a model which still retains its essential O(Kn) character. He shows that the form
(if not the exact coefficients, except for a certain molecular model) of two particular
terms that appear in the Burnett constitutive model for T are in fact encompassed
by the additional term in p in his modified Newtonian T of (4.7). While all the stress
terms in the Burnett equations are formally O(Kn?), under some circumstances these
two particular terms can be of similar magnitude to those of O(Kn), i.e. the same
order of accuracy as the Navier—Stokes equations. If the issue of the correct model for
the volume diffusivity, «,, can be resolved then the Brenner—Navier—Stokes equations
may therefore provide a simple alternative to the family of extended hydrodynamic
models that includes those of Burnett, Grad etc., producing reasonably accurate
solutions of intermediate-Kn flows at a modest computational cost.

While it is known that the classical Burnett equations do not satisfy the second law
of thermodynamics, truncated or extended forms of the equations can be constructed
that do (see e.g. Lumpkin & Chapman 1991; Zhong et al. 1991; Reese 1993; Reese
et al. 1995). The fact that the Brenner—Navier—-Stokes equations are less prone to
both numerical instability and unphysical solution may indicate that thermodynamic
consistency is less of a problem with these equations than with more complex extended
hydrodynamics models.

We recognize that it is not reasonable to rely on one benchmark case to decide the
value of the Brenner—Navier—Stokes equations, or any other extended hydrodynamic
model (or its associated boundary conditions). Equation (1.1) indicates there are three
distinct categories of near-equilibrium flows:

A Ma= 0(1), Re —> oo, typical of super- and hypersonic flows;

B Ma— 0, Re= O(1), typical of flows in micro- or nano-systems;

C Ma— 0, Re — oo, typical of incompressible turbulent boundary layer flows.

As Kn vanishes more quickly for flows in category C than in categories A and B,
departures from local equilibrium in category C flows are not as significant as those
in category A or B flows. This paper has addressed a category A flow in which the
boundary conditions are not in doubt, but benchmark cases for models of inter-
mediate-Kn flows generally require additional boundary conditions, usually at solid
surfaces, the specification of which is one of the outstanding problems in hydro-
dynamic approaches to rarefied gas-dynamics. Setting aside the boundary condition
problem, however, we can propose a number of benchmark cases in categories A and
B that any new hydrodynamic model for rarefied flows should be tested against:
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(i) the shock structure problem, as outlined in this paper (including comparisons
of Q,, 67, and the thickness of Ma = oo shocks, in addition to the usual comparison
with L")

(ii) the nonlinearity of the thermal and momentum Knudsen layers (the region
O(4A) close to solid surfaces);

(iii) the ‘Knudsen paradox’ in Poiseuille flow, i.e. the minimum in the mass flow
rate at around Kn ~ 1, as well as bimodality in the temperature profile;

(iv) drag coefficients and heat transfer in: flow around a sphere, flow around a
cylinder and Couette flow;

(v) variation of skin friction on cones in supersonic flow;

(vi) base pressures on cone-cylinder configurations in supersonic flow as the
Knudsen layer extends far into the wake region;

(vii) thermophoresis, i.e. the force on particles suspended in a rarefied gas between
two parallel plates of different temperature;

(viii) dispersion and absorption of ultrasonic sound waves.
This list is neither exclusive nor comprehensive; we are sure that other good
benchmark cases could be added to it. The caveat is that in most cases experimental
data is extremely sparse and unreliable, and unfortunately much reliance still needs
to be placed on comparison with independent DSMC or other molecular dynamics
simulations as ‘experimental analogues’.
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